
 Anais 1125

TVPP: A Research Oriented P2P Live Streaming System

João F. A. e Oliveira1, Rodrigo S. M. Viana1, Alex B. Vieira2,
Marcus V. M. Rocha3, Sérgio V. A. Campos1

1Departamento de Ciência da Computação – UFMG

2Departamento de Ciência da Computação – UFJF

3Assembléia Legislativa de Minas Gerais

Abstract. In the past five to six years, peer to peer live streaming has grown to
support millions of users but the behavior of such systems is still not fully under-
stood. Researchers experiment and try to understand popular/commercial plat-
forms with proprietary code by crawling the network with one or more nodes,
through network traffic analysis, reverse engineering and by recreating partial
network graphs. However, most existing systems do not provide tools for ana-
lyzing the behavior in a comprehensive way, and these experiments cannot fully
explain how this technology works. We introduce a tool called TVPP that sup-
ports peer-to-peer live streaming, and is being developed with the purpose of
answering questions about how the underlying technology behaves and how it
can be improved by allowing fine tuning of system parameters such as neigh-
borhood size and bandwidth limits, and tests over alternative algorithms imple-
mentation. Further, it allows experimental data acquisition without additional
network traffic analyzers which can impact experimental results.

1. Introduction

Nowadays, P2P live streaming systems are widely available and extensively used by mil-
lions of users across many different architectures. An increase in the number of publica-
tions, in the past five years that discuss performance issues, load behavior, cross-platform
analysis and many more topics related to P2P live streaming systems, shows that re-
searchers are still trying to better understand the details behind these systems.

A major issue remains which makes it hard to study real life systems: most popu-
lar live systems, such as TvAnts1, UUSee2, SopCast3, PPLive4 and PPStream5 are com-
mercial applications, with no publicly available source code, which makes it harder for
researchers to gather useful data or log files. Most studies targeting these systems deal
with a black box and must rely on educated guesses with regard to system architecture,
protocols and internals. Crawling the network, analyzing traffic, recreating partial net-
work graphs are examples of methods frequently used to infer system structure and be-
havior [Vieira et al. 2009,Horvath et al. 2008,Silverston et al. 2009,Ali et al. 2006,Tang
et al. 2009]. Moreover, in such a scenario where systems do not facilitate third party
testing or reverse engineering, control of key protocol parameters, such as partnership or
bandwidth limits, media buffer size, chunk scheduling and partner maintenance strategies,
which would allow deeper experimentation and analysis, are absent.

1tvants.en.softronic.com;2www.uusee.com;3www.sopcast.org;4www.synacat.com;5www.ppstream.com

 1126 31o Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos – SBRC 2013

In this paper we present a new P2P live streaming system: TVPP. TVPP is de-
signed to provide a similar service to popular proprietary commercial systems, such as
SopCast, but with a few advantages for researchers.

• easy data acquisition: no need for additional network traffic analyzers
• configurability: several key parameters to experiment with
• modularity: easier testing of new algorithms
• collection of arbitrary data: one can change code to output what he needs
• exact analysis: one can look at the code to understand results

Through those advantages TVPP allows answering key questions, such as:

• what if there is only a limited number of partners for each peer?
• what if x% of peers are not willing or able to contribute with upstream bandwidth?
• what if downstream rate is reduced for some time?
• what if x% of some peers are receiving contents A and sending contents B (e.g.

contents B could be contents A with added user comments)?

TVPP focuses on addressing the questions mentioned before and many other key
design aspects of P2P live streaming systems. Also, TVPP source code is available for
experimentation and modification. Through this paper we present the TVPP as a tool
describing its design choices, structure, and what can be done with it. We have already
conducted tests configuring TVPP with parameters to mimic SopCast behavior. The re-
sults show that, in this case, our system has performance comparable to that of SopCast.

The remainder of this paper is organized as follows. Several design choices for
TVPP are mentioned in Section 2. After that we describe a quick ”how to use” TVPP,
detailing a few parameters available. In the next section we discuss related work. Section
5 expresses our conclusions, remarks and future work. And, finally, Section 6 details the
proposed demonstration that will show our tool features.

2. The TVPP Design
TVPP is a mesh-pull P2P live streaming system, using the structures similar to those of
the most popular platforms [Sentinelli et al. 2007]. An interesting feature is that TVPP
has been designed to be expandable, as described below, since it aims to experiment
with a wide range of questions, and therefore must be able to include additional moni-
toring mechanisms. Some of the key mechanisms that have been developed to maintain
this functionality are particularly interesting to explore in further detail, such as chunk
scheduling, overlay maintenance and logging. In Section 3 we explores a full list of con-
figurable parameters present on TVPP.

2.1. Overlay Maintenance

In mesh-pull applications, peers are organized in a mesh like network, without any hier-
archy, where each peer only requests or sends data to its partners. This design has the
advantage of being scalable and fault resilient [Fodor and Dan 2007, Hei et al. 2008].

In TVPP, as in SopCast, mesh construction and maintenance relies on a centralized
bootstrap server. For each channel available in the system, the bootstrap stores a list of
nodes connected to that channel, the channel’s source peer and its most recent produced
chunk ID. In order to keep each channel’s peer list up to date, peers send a ping packet to

 Anais 1127

the bootstrap periodically. The channel source, or server peer, also sends ping messages,
which also updates the last generated chunk ID value for that channel. This value is used
in a further moment to initialize new peers. Peers are removed from their channels’ peer
lists if they fail to report their existence to the bootstrap for a configurable period, typically
a few seconds.

A channel’s source peer (one that creates media and starts its distribution) an-
nounces its intent to create a channel to the bootstrap. Other peers join the network send-
ing a peer request message to the bootstrap asking for peers watching an existing channel.
After receiving a peer request message, the bootstrap selects a subset of peers from that
channel’s peers list and sends it back to the requester. This message also contains the last
generated chunk ID so new peers know from which chunk to start asking.

Upon receiving the requested subset from the bootstrap, peers store them in a can-
didate peer list. Until it reaches neighborhood size limit, they will periodically try to
establish a partnership with some candidates, turning that candidate into a partner. The
candidate selection strategy is configurable and new strategies can be implemented. Part-
ners may face connection issues or leave the network. In these cases they can be turned
back into candidates or be dropped. Also, from time to time, peers will send new peer
request messages to the bootstrap in order to refresh their candidates list. Another feature
is that, periodically, partnerships can be undone. The selection strategy of partnerships to
be undone is also configurable.

2.2. Chunk Scheduling

Another technique implemented in TVPP is described in [Zhang et al. 2005], where
authors propose a model – known as the data-driven model. According to this model, all
peers would only request data to neighbors that actually have the data. This is possible
by making each peer broadcast periodically which chunks of data they have. This design
generates more control overhead, but it prevents request/transmission redundancy.

The broadcasted message contains the buffer map which has an integer indicating
the newest chunk of media present on the peers’ buffer and a bit map where each position
determines the presence or not of a previous chunk. The nth position of the map represents
the id of the newest chunk minus n. Thus each buffer map covers a dynamic range of
chunk IDs. Buffer map messages are also used as an ”I am alive” message. If a peer stays
more than a configurable period of time without receiving it from a neighbor, the peer
removes that neighbor from its list.

The media server peer will naturally be the first node to have any chunk available.
Through buffer map messages its partners will know that it has some chunks that they do
not have. This behavior is reproduced over the entire network, once any node announces
the presence of a chunk its partners might try to request, if they do not have it. Every
few milliseconds each peer compares its own buffer map with its partners’ maps looking
for the newest chunk to request. Using a configurable selection strategy, it then selects
a partner to serve that chunk and adds it to a finite request list signaling its intent to
ask that partner for that particular chunk. The oldest chunk request is dropped if a new
request arrives and the list is full. This request scheduling rule follows the earliest deadline
first (EDF) rule, in which chunks closer to meet the deadline are requested first. After
receiving a chunk, the respective request is removed from the request list, the chunk is

 1128 31o Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos – SBRC 2013

stored and the buffer map sets it as present.

2.3. Logging
Ping messages that are sent to the bootstrap also carry performance data. Using the boot-
strap as the logging server increases the traffic at the bootstrap, but it has the advantage
that there is no need for a special server to store log data.

These special ping – or log messages – include the following performance data:
the number of packets generated, sent and received per second, packets missed since the
last log message (a discontinuity measure), average hop count for each chunk received,
and neighborhood size. The list can be easily extended, as new measures are envisioned
and required. A more detailed chunk performance data is sent also in each message. This
chunk data relates to one sample chunk sent during this period and is composed by its
chunk ID, hop count and timestamps indicating when it was generated or consumed. All
that data are used to get useful insights about latency, deadline miss rate, and distance that
a chunk travels before being delivered. These are especially interesting because they are
very hard (in some cases impossible) to be captured from commercial systems.

Another feature is that each peer periodically sends to the bootstrap a list of what
other peers they are connected to. This is done through a different message with a list
of peer addresses and a timestamp upon bootstrap receival. With those reports, one may
track the evolution of the overlay over time.

2.4. New Modules/Algorithms
TVPP’s object-oriented design includes generic interfaces for many modules. These in-
terfaces provide flexibility to implement new features or algorithms. For instance, it is
easy to create a new kind of message that will be exchanged between nodes since the
send/receive methods receive a Message object as parameter and all messages inherit
from Message. So, to create a new kind of message, one must only create a class that
extends from Message, add a new entry at the group of message kinds, describe the struc-
ture of the new kind of message through an abstract method inherit from Message and
introduce a method to handle that message.

Two other mechanisms which are easy to alter are the scheduler policy and the
bootstrap peer selection algorithms. Both have been implemented as a strategy pattern.
To extend these mechanisms, one must develop his algorithm as a extension of a strategy
interface and patch the new strategy in with a few lines of code on headers and at the
parameter handler.

Implementing a new peer performance metric and logging it is also simple. Since
the log message is basically a wrapper, one must add the new metric at the log message,
to the chain that constructs it and make sure that it will be unwrapped and written at the
log file on the other side, in this case the bootstrap.

3. Usage
TVPP contains two applications, the bootstrap and the client. Both programs are Linux
compatible, but can be compiled through Cygwin6 to create a Windows executable. The
programs can be run through command line.

6http://www.cygwin.com/

 Anais 1129

Clients can either be the channel source or a viewer. In order to start an experiment
one must start a bootstrap, a channel source and any number of viewers. We recall that
each program must have its own address, an ip-port pair. Usually our own experiments are
conducted on PlanetLab7 and we only attach one host to each node. More than one logical
viewers can be located at the same physical host.Peers and bootstrap can be configurable
to use specific ports.

As previously mentioned, the bootstrap stores data about each channel. Another
parameter is channel id. The bootstrap can hold several channels, thus TVPP can per-
form parallel experiments. Since each channel creates a different overlay, results do not
interfere with each other.

Finally, the most interesting parameters are those that can actually alter experi-
mental results. Currently, one can fix the following set of parameters:

• mode, initially thought as a way to define if a peer will be a source or a viewer,
this parameter can be used to create special kinds of peers, e.g. a free rider;

• buffer size, that affects buffer map message sizes and the peer capacity to hold
chunks;

• maximum number of neighbors, relates with the overlay, more partners means
more chunk sources, a more connected network, but it also increases buffer map
messages throughput since they are periodically broadcasted to all neighbors;

• request limit, defines the amount of chunks that can be simultaneously requested;
• unresponsive partnership timeout, this timeout defines how many seconds a peer

must wait before removing an unresponsive neighbor from its partners list;
• upload and download limits, these restrict TVPP to send or receive a maximum

number of bytes using a leaky bucket;
• bootstrap’s peer subset selection algorithm, the subset of peers returned by the

bootstrap can be random, oriented by IP distance or RTT (round-trip time) be-
tween peers, but one can create his own selection strategy;

• partnership candidate selection algorithms, for connecting or disconnecting a
neighbor, these algorithms may be the same as above since they are also peer
selection strategies;

• chunk scheduler algorithm, another peer selection algorithm but with chunk trans-
mission purposes.
Using this tool, we have already conducted some experiments. In order to illus-

trate its use, we have compared TVPP with SopCast(SC). We have setup over 500 Pla-
netLab nodes, have streamed a 100 minutes 400Kbps average bitrate video which looped
continuously during our experiments and have captured data for 60 minutes in both Sop-
Cast and TVPP systems. TVPP allowed us to set neighborhood limits for server and
clients at 10 and 50 peers, respectively, following characteristics observed on SopCast.
Figure 1 presents a comparison between peer upload and download rates for both systems
that shows one of many similarities between the systems. A point in those curves shows
peers that have at least the indicated upload/download rate in a given second in time.

4. Related Work
In 2005, CoolStreaming [Zhang et al. 2005] gained academic notoriety as the first P2P
live streaming system to publish information about its internal scheme. Its data-driven

7http://www.planet-lab.org/

 1130 31o Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos – SBRC 2013

(a) Download grouped by control and data pack-
ets

(b) Upload restricted to data packets

Figure 1. Cdf of download and upload rates of each peer in each second for both
systems. Stream bitrate is ≈50KBps.

model has been extensively cited over the few years. Nevertheless, the system was never
deployed as a testing platform and few measurements were done over it [Li et al. 2008].

Several measurement papers have been published that try to understand popular
P2P live streaming systems such as PPLive and SopCast [Vieira et al. 2009,Horvath et al.
2008, Silverston et al. 2009, Ali et al. 2006, Tang et al. 2009] though few papers had pro-
prietary data to work on, such as UUSee [Wu et al. 2007]. Most of the research published
on popular systems rely on crawling the network with a subset of nodes and capturing
network traffic, but that approach is inefficient while trying to answer some questions like
those stated in Section 1. Especially, what if questions that propose abnormal situations.

The NAPA-WINE project [Abeni et al. 2010] is the closest effort toward building
a P2P live streaming system with academic purposes in the last few years. Their work
is focused at performance and system optimization, especially through network aware-
ness, creating partnerships using insights from ALTO [Seedorf and Burger 2009]. They
have designed a development toolkit and a set of libraries to facilitate the implementation
and integration of experimental algorithms into their project. Their design also includes
monitoring the latency and the available bandwidth between two peers, or the presence
of Network Address Translation (NAT). Contrary to NAPA-WINE, which concentrates
on measuring network behavior, TVPP focuses on plain experimentation and therefore
can easily provide raw logs, receive new algorithms and extensions, and adapt to several
different kinds of experiments, such as freeriding, or polluting clients.

5. Conclusions

In this paper we present TVPP, a P2P live streaming system that has been designed to
simplify experiments and to assist researchers in better understanding the behavior of
P2P-TV systems. TVPP works similarly to popular existing systems such as SopCast, but
enables more efficient experimentation and data acquisition by eliminating the need of
external network traffic analyzers, by allowing configuration of system parameters, and
by providing a set of performance and overlay data. Moreover, TVPP can also provide
additional information about system behavior, such as latency and chunk miss rate, that
impact user experience but cannot be easily obtained in existing systems.

 Anais 1131

Figure 2. Screenshot of an experiment showing the bootstrap (top left), a channel
source (bottom left) and two viewers with their players (middle and right).

This tool is already operational, supporting experiments and providing results in
some of our studies. We expect to continue extending it to include new features. Mean-
while, we already envision a few tweaks that would make it even better and easier for
researchers. Some of those are: embedding a configurable churn generator, using a xml-
like file to configure experiments, altering parameters in execution time, and real-time
graphical monitoring.

We believe that TVPP can provide an efficient alternative to P2P-TV experimen-
tation, providing a more direct and straightforward way of evaluating new algorithms. In
addition to that, we believe that TVPP can also be used as an efficient P2P live streaming
system in real applications.

6. Demo Proposal
The demo presentation can be held with one or multiple computers. We expect to show a
live capture with bootstrap, media source and other peers, deploying a real experiment on
PlanetLab. Compile and run sequence on participants computers will also be stimulated.
Figure 2 shows a sample experiment using 400+ nodes. In this experiment the source has
sent media to the top viewer that redistributed it to the network. The bottom viewer has
received the stream through the nodes in PlanetLab and therefore with a near 3 seconds
latency. On each screen it can be observed output that show message exchange, expose
peer lists and report about chunk IDs (what is the newer chunk, what is being requested,
what have been received, what is being played). By default, we plan on starting an empty
overlay with the chronometer video. Afterwards we will insert a single peer, then we shall
remotely start hundreds of PlanetLab peers, and, finally, start another peer. This will show
peers in two different layers of the network, one closer to the server and other farthest.

A TVPP stable version and documentation can be found at:
http://vod.dcc.ufmg.br/tvpp/. Yet, newer versions are available through request.

 1132 31o Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos – SBRC 2013

References
Abeni, L., Bakay, A., Biazzini, M., Birke, R., Leonardi, E., Cigno, L., Kiraly, C., Mellia,

M., Niccolini, S., Seedorf, J., et al. (2010). Network Friendly P2P-TV: The Napa-
Wine Approach. In Peer-to-Peer Computing (P2P), 2010 IEEE Tenth International
Conference on, pages 1–2. IEEE.

Ali, S., Mathur, A., and Zhang, H. (2006). Measurement of commercial peer-to-peer live
video streaming. In Proc. of Workshop in Recent Advances in Peer-to-Peer Streaming.
Citeseer.

Fodor, V. and Dan, G. (2007). Resilience in live peer-to-peer streaming [peer-to-peer
multimedia streaming]. Communications Magazine, IEEE, 45(6):116–123.

Hei, X., Liu, Y., and Ross, K. (2008). IPTV over P2P streaming networks: the mesh-pull
approach. Communications Magazine, IEEE, 46(2):86–92.

Horvath, A., Telek, M., Rossi, D., Veglia, P., Ciullo, D., Garcia, M., Leonardi, E., and
Mellia, M. (2008). Dissecting PPLive, SopCast, TVAnts. submitted to ACM Conext.

Li, B., Xie, S., Qu, Y., Keung, G., Lin, C., Liu, J., and Zhang, X. (2008). Inside the new
coolstreaming: Principles, measurements and performance implications. In INFO-
COM 2008. The 27th Conference on Computer Communications. IEEE, pages 1031–
1039. Ieee.

Seedorf, J. and Burger, E. (2009). Application-layer traffic optimization (ALTO) problem
statement. draft-marocco-alto-problem-statement-04 (work in progress).

Sentinelli, A., Marfia, G., Gerla, M., Kleinrock, L., and Tewari, S. (2007). Will IPTV
ride the peer-to-peer stream?[Peer-to-Peer Multimedia Streaming]. Communications
Magazine, IEEE, 45(6):86–92.

Silverston, T., Fourmaux, O., Botta, A., Dainotti, A., Pescapé, A., Ventre, G., and Sala-
matian, K. (2009). Traffic analysis of peer-to-peer IPTV communities. Computer
Networks, 53(4):470–484.

Tang, S., Lu, Y., Hernández, J., Kuipers, F., and Van Mieghem, P. (2009). Topology
dynamics in a P2PTV network. NETWORKING 2009, pages 326–337.

Vieira, A., Gomes, P., Rocha, M., Almeida, J., and Campos, S. (2009). A behaviour model
of the SopCast users. In Proceedings of the XV Brazilian Symposium on Multimedia
and the Web, pages 1–8. ACM.

Wu, C., Li, B., and Zhao, S. (2007). Magellan: Charting large-scale peer-to-peer live
streaming topologies.

Zhang, X., Liu, J., Li, B., and Yum, T. (2005). CoolStreaming/DONet: A data-driven
overlay network for efficient live media streaming. In proceedings of IEEE Infocom,
volume 3, pages 13–17. Citeseer.

