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Abstract. Content dissemination networks are pervasive in todays’ Internet.
Examples of content dissemination networks include peer-to-peer networks
(P2P), content distribution networks (CDN) and information centric networks
(ICN). In this paper, we propose a new system design for information centric
networks which leverages opportunistic searching, routing and caching. Our
system design is based on an hierarchical tiered structure.Random walks are
used to find content inside each tier, and gateways across tiers are used to direct
requests towards servers placed in the top tier, which are accessed in case con-
tent replicas are not found in lower tiers. Then, we propose amodel to analyze
the system in consideration. The model yields metrics such as mean time to find
a content and the load experienced by custodians as a function of the network
topology. Using the model, we identify tradeoffs between these two metrics, and
numerically show how to find the optimal time to live of the random walks.

1. Introduction

In today’s Internet, there is a strong demand for content dissemination networks, such as
social networks(e.g. Facebook) andvideo networks(e.g. Youtube and RIO [de Souza e
Silva et al. 2006]). To support this growing demand, two broad classes of solutions,
supported by IP host-to-host communications, have been proposed: Content Delivery
Networks (CDNs) and Peer-to-Peer Networks (P2P).

In CDNs,dedicated serversstore all the information published. Copies of popular
contents are placed close to the users within cache servers.Users are automatically and
transparently re-directed to the most appropriate server by a central authority. Quality of
Service (QoS) and advanced monitoring techniques are deployed, through proprietary so-
lutions, to redirect each user requests (e.g., Akamai Networks). In CDNs, a set oforigin
serversstore a copy of all published content. Popular contents are also stored incache
serversclose to users, so as to minimize the service delay experienced by the requesters.
Requests for content are sent through IP routers to the central authority. Content flows
back to users, along the IP routers.

In P2P systems,peersact as both client and servers for contents. Peers’ requests
are sent to other peers, from where content fragments (chunks) can be retrieved. Bittorrent
and Emule are examples of P2P systems. As soon as peers have downloaded all desired
content chunks, they may either leave the system or remain asfuture providers for chunks
(seeders). While seeders, P2P nodes can leave the system for different reasons (e.g.,
closing their connection to other peers, power failures, mobility). Indeed, there are no
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guarantees on the time a seeder will remain present in a P2P system. If peers leave the
system immediately after concluding their downloads, content might become unavailable
which might lead to instability [Menasché et al. 2010]. Peers exchange information
through IP routers, but in contrast to CDNs, there are no dedicated servers to cache content
close to users.

According to [Ahlgren et al. 2012], global traffic in the Internet will increase by a
factor of four from 2009 to 2014, approaching 64 exabytes permonth in 2014, compared
to approximately 15 exabytes per month in 2009. Global mobile data traffic is expected
to double every year through 2014. Despite the tremendous success of CDNs and P2P
systems, they present issues if we consider thescalabilityandreliability envisioned for
next generation of content dissemination networks. With billions of mobile nodes clai-
ming for contents, central decision policies at CDNs tend not to scale. In P2P networks,
the absence of dedicated cache servers close to users, as well as the lack of guarantees for
a peer to remain in the system after obtaining the desired content, hampers reliability.

The scalability and reliability challenges for massive distribution content gave rise
to a new research area: Information Centric Networks (ICN) [Ghodsi et al. 2011]. In
ICNs, users know thenameof a content being searched, before issuing requests. All se-
arched content is previously stored in the network through subscriptions to the network.
Caching at all routers, also referred to asuniversal caching, is considered. Under uni-
versal caching, caching is provided to all users, and can be potentially implemented by
all routers, being pervasive along the entire network. Figure 1 exemplifies this scenario.
Questions on how to deploy efficient algorithms to exploreuniversal cachingand on how
to defineinter-domainrouting policies give rise to important challenges.

Figura 1. ICN scenario

Figure 2 shows some of the most important ICN features. In ICNs, content is
published without any explicit destination address. Receivers subscribe to the network
through a query (request) for named contents. Users’ requests are forwarded by structu-
red or non-structured topologies. When there is a matching between a query and a stored
content, content is delivered to the subscribers. During delivery, content might be cached
and replicated in the network. This strategy is known asin-networking caching. Content
can be sent to subscribers over TCP/IP transport mechanismsover paths which are obli-
vious to the path taken by the requests. Alternatively, content can be sent in the reverse
path of requests trails stored across the caches. We reference caches in ICNs henceforth
ascache-routers.

In this article, our main contribution is a novel ICN architecture with routers dis-
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Figura 2. Publish/subscribe and content distribution mech anisms

posed along hierarchical tiers domains, without a global lookup service to map names to
IP addresses to all content present in the network:

• System design: We propose an opportunistic search algorithm to be executed
across hierarchical tiers. Random walks are used to opportunistically find replicas of the
content inside a tier. If no replicas are found, requests areforwarded to another tier in the
direction of publish area servers, which maintain fixed copies of the content. This way,
we cope with the tradeoff between exploration of new routes to content replicas and ex-
ploitation of known routes to fixed replicas. In addition, wealso propose an opportunistic
caching policy using reinforced counters. The content placement and eviction policies
are targeted towards self-tuned storage mechanism which must distribute content in the
network to satisfy demands that vary over time.

• Analytical model: We propose an analytical model to evaluate ICNs inspired
by reliability theory concepts. The model yields metrics such as the mean time to find
a content and the load at the publishing areas as a function ofthe network topology and
the time to live (TTL) of requests inside domains. Our model allows us to study tradeoffs
in the choice of the TTL. Smaller values of TTL might lead to a reduction in the time to
retrieve information at the cost of an increase in the system’s load at publishing areas.

The remainder of this paper is organized as follows. Section2 presents related
work and a background on Information Centric Networks. Section 3 introduces the pro-
posed ICN system design, Section 4 contains the analytical model and in Section 5 we
present numerical results obtained with the proposed model. Section 6 concludes the
paper.

2. Related Work
The literature on ICN can be broadly classified into structured architectures, such as [Ko-
ponen et al. 2007, Lagutin et al. 2010, 2nd NetInf Description 2010] and unstructured
architectures, such as [Rosensweig et al. 2010, Kakida et al. 2011]. In what follows, we
briefly describe some of the proposals.

Dona [Koponen et al. 2007] consists of an hierarchy of domains, wherein a resolu-
tion handler (RH) knows the IP location of all content published in descendent domains.
RHs placed in the highest domain are aware of all the content published in the entire
network. Psirp [Lagutin et al. 2010], Netinf [2nd NetInf Description 2010] and Mulit-
cache [Katsaros et al. 2011] are proposals that deploy Distributed Hash Tables (DHT),
enabling multiple logical entities to share the knowledge of all content published in the
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network, in a distributed fashion. Each content placed in the network is mapped to a hash
key, with a hash key being associated with a single node of theDHT.

DHT structures are highly scalable, but may impose considerable overhead main-
tenance costs [Chen et al. 2008]. Whenever a node fails or becomes repaired, requests
must be sent along the network to reassure the node location in the network. Neigh-
borhood adjacencies must be reestablished and file-index databases related to a partition
management must be resettled. Also, many unsolved securityvulnerabilities are able to
disrupt the pre-defined operation of DHTs nodes [Urdaneta etal. 2011]. At last, in a
network composed of domains where providers care about administrative autonomy, the
use of a global hash table is unfeasible [D’Ambrosio et al. 2011].

Jacobson et al. [Jacobson et al. 2009] propose a non structured geometry topology
for routing requests. Published content is announced through routing protocols, compo-
sing routing tables supporting name aggregation. Requestsare routed towards publishing
areas leaving a trail calledbread crumbs, so content follows the reverse paths set by the
trails, when sent to users. As content flows to users, the bread crumbs are consumed. In
general, content replicas will not be stored in the domain they were originally published.
To be encountered, routes for replicas should be in the routing tables. Avoiding an explo-
sion of the size of the routing tables becomes an important challenge.

To enhance the discovery of cached contents, Rosensweig et al. [Rosensweig et al.
2010] and Kakida et al. [Kakida et al. 2011] allow bread crumbs not to be consumed on
the fly, when content traverses the network. This allows trails for previously downloaded
contents to be preserved. A new user request that reaches a trail for a desired content will
be sent to a cache-router indicated by the trail, before flowing to the publishing areas. Op-
portunistically downloading content from nearby cache-routers may considerably reduce
the time users take to retrieve information. Nevertheless,the proposals encompassing the
preservation of bread crumbs do not explicitly address how published information will be
announced to fulfill the routing tables.

In this article, we avoid the drawbacks mentioned in this section, for both structu-
red and unstructured geometry topologies. To this aim, we propose a novel architecture
with cache-routers disposed across hierarchical domains.Users’ requests flow across ti-
ers towards the publishing areas. Random walks are issued toexplore domains’ vicinity,
so as to allow opportunistic encounters with the desired content. That way, we avoid the
drawbacks of structured geometries, as well as the problem of fulfilling routing tables
which is common to the unstructured architectures discussed above.

The model presented in this paper is inspired by reliabilitymetrics [de Souza e
Silva and Muntz 1992]. The performance of random walks for search in unstructured
hybrid peer-to-peer systems has been analyzed by Ioannidisand Marbach [Ioannidis and
Marbach 2008]. Nonetheless, Ioannidis and Marbach focus onasymptotic results when
the number of nodes in the network grows to infinity, and considered a single domain
(tier). To the best of our knowledge, our work is the first to analyze the performance of
random walks for search in multi-tiered architectures, accounting for the tradeoffs invol-
ved in the choice of the time to live of the random walks. Existing multicache multi-tier
normal cache overlay network either consider global knowledge of content placement
(CDN, P2P), or single path to the storage area (Cache Trees).None of these methods
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explore the vicinity of a cache in a fully distributed way.

3. System Design

Our architecture design considerslogical hierarchicaltiers (also calleddomains) compo-
sed ofcache-routers(i.e., routers that can store content replicas). We considerN logical
hierarchical tiers, in which tier 1 is the top level tier, andtier N constitutes the bottom
level. Routers in tierN are the only ones connected to users. Users publish content in
storage areas connected to tier1 routers. The interaction among the publishing areas and
tier 1 routers is better detailed in Figure 3. The figure displays a single publishing area
in tier 1 and the logical hierarchy of cache-routers. Routers forward requests towards pu-
blishing areas which contain permanent copies of the content. Replicas may be cached in
the cache-routers in the logical hierarchy. A strategy should be adopted to allowopportu-
nisticencounters between requests and replicas in a best-effort manner as will be detailed
below. Opportunistic encounters are probabilistic in nature.

Figura 3. ICN content distribution mechanisms.

3.1. Content search: random walks and bread crumbs

When requests are issued by users the cache-routers forwardthem to the publishing areas.
Each cache-router of tieri is logically connected to a subset of cache-routers in the same
tier i and in the parent tieri − 1. When a request first reaches a tier, a random walk is
issued to find replicas of the content that may have been cached in that tier. The random
walk lasts for at mostT units of time, and only traverses cache-routers in the same level.
That is, a counter is set to limit the amount of search time fora contentwithin a level.
If the desired content is not found when this counter expires, the router (say routerk at
level i) that holds the request at that time transfers it to leveli − 1, that is, to one of the
routers in leveli − 1 routerk is (logically) connected to. A new random walk will then
be issued, but now at leveli − 1. If the content been searched is found at a cache-router
of hierarchyj, it is sent to the user as it will be explained below. Otherwise, the request
will be forwarded up in the hierarchy until the publishing area (tier 1) is reached where
the content is guaranteed to be found (otherwise the contentwas never stored in the first
place). Note that the search does not generate significant traffic. Each request from a
user generates a single search message that performs a random walk at one tier at a time.
The traffic due to this request message is negligible as compared to that generated by the
content to be transferred.
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As the requests are forwarded upwards across the hierarchy,a set ofbackward
pointers is maintained. Those pointers are henceforth referred to asbread crumbs. When
a content is located in the network, it is delivered to the users following the reverse path
of the bread crumbs. As the content follows the path ofbread crumbs, the trail is erased.
Random walks within domains do not generate bread crumbs. Therefore, when content
is delivered to users it does not follow the exact same path asthe random walks. This
means that random walks do not impose extra hops/side effects when content is delivered
to users. We use a set of counters, namedreinforced counters(RCs), to keep track of the
load across the network for each content. The placement of replicas will be controlled
using the reinforced counters, which will be used to decide which and when contents
should be stored or evicted at each cache-router. Our approach is self-adaptive to users’
loads.

3.2. Content placement: reinforced counters

Each request carries a hash keyinf to identify the content being searched for. As menti-
oned above, a trail of bread crumbs is left at each cache-router traversed by the request.
The trail includes a back pointer to the preceding router visited by the request (the bread
crumb), the hash keyinf to identify the request and an associated counter (calledreinfor-
ced counter) that is incremented when the request arrives at a cache-router. Thereinforced
counteris used to determine whether the content associated withinf should be stored at
the cache-router. Each cache-router keeps a reinforced counterrc(inf ), associated to each
hash keyinf . Whenever a request forinf reaches a cache-router,rc(inf ) is incremented by
one. When content is downloaded through the reverse path left by the trails, bread crumbs
are consumed but the reinforced counters are kept intact. Each cache-router periodically
decreases the reinforced counterrc(inf ) associated toinf and this period is a parameter to
be set.

A reinforced counterrc(inf ) for contentinf at a cache-router has two thresholds:
rc-up(inf ) andrc-low(inf ). If rc(inf ) reaches the upper thresholdrc-up(inf ) the content
inf is cached at that cache-router after it is found and when it traverses the cache-router
towards to the user. Wheneverrc(inf ) reaches the lower thresholdrc-low(inf ) and if inf
is cached at that cache-router, this content is immediatelyremoved from the cache-router.
We assume that cache-routers have enough storage capacity to store any content that they
are required to maintain. The reinforced counters mechanism allows popular contents to
be transferred from the publishing areas to the cache-routers. That way, the opportunistic
discovery of popular content is favored at cache-routers. In contrast, if demand is not
high enough to justify consumption of storage resources, reinforced counters will favor
the eviction of the content.

We provide additional insights on the connection between reinforced counters and
content placement. For simplicity of exposition, and without loss of generality, we assume
that content is demanded by users at a given fixed rate. We thenshow that the reinforced
counters fully determine content placement at the cache-routers. To this aim, we consider
a fluid approximation, where content requests arrive according to a flow with a given
intensity, and the reinforced counters are also approximated as being continuous. Let
Λm,l(inf ) be the total load forinf arriving from tierl + 1 at them-th cache-router at tier
l. Let γ(inf ) be the rate at which the reinforced countersrc(inf ) are decremented. We
assume that therc(inf ) are initialized asrc-low(inf ), so that ifΛm,l(inf ) = γ(inf ) then
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content will not be stored atm.

Proposition 3.1. Under the fluid approximation and an hierarchical tiered topology, a
cache-router stores a copy ofinf if and only ifΛm,l(inf) > γ(inf).

Proof: The proof is inspired by [Rosensweig et al. 2013, Lemma 1]. Inan hi-
erarchical network we define the direction of requests asupstreamand the reverse as
downstream. A cache-router is affected only by requests that pass through it, and requests
pass through routers only upstream, so upstream cache-routers do not impact cache-router
m through their requests. Content flows downstream, but only passes throughm for re-
quests that were issued by cache-routerm. Therefore, the state and requests of upstream
routers do not impact the state and requests issued by downstream routers.

We can determine if a cache-router will store a content in a bottom-up manner.
First, consider the leafs of the tiered topology. At such cache-routers, ifΛm,l(inf ) >
γ(inf ) thenrc(inf ) will eventually reachrc-up(inf ), and content will be stored and never
evicted. IfΛm,l(inf ) ≤ γ(inf ), in contrast,rc(inf ) will remain equal to its initial valuerc-
low(inf ). rc(inf ) will afterwards remain fixed, and the cache-router, marked.Once leafs
are marked, we proceed upstream. Using the same argument as the one in the paragraph
above, we determine the content placement at the next cache-router that has all its children
marked, and so on, up to reaching routers at tier 1, where all content is stored. ✷

Given a workload, proposition 3.1 can be used to determine which domains across
the network will hold a copy of each content, if we know the (probabilistic) choice by
which a router of leveli passes requests to routers of leveli − 1 at which it is logically
connected to. In the remainder of this paper we will assume that the probability distribu-
tion of content over cache-routers is fixed and given for all cache-routers.

4. System Analysis

In this section we present the model analysis for a single domain (i.e., a logical tier). Our
main goals are to derive the key metrics of interest, namely 1) mean time to find content
and 2) the fraction of requests that hit the publishing area.These metrics are important to
evaluate the performance of the proposed architecture. We consider a network ofC cache-
routers in a domain. Figure 4(a) illustrates a domain with five cache-routers. Assume that
the desired content is stored at cache-routers 3, 4 and 5. Suppose that a request arrives
from a downstream domain to cache-router 2. Then, cache-router 2 starts a random walk
in the domain to find the content. LetT be the maximum time a request might spend
in a domain before being redirected to the upstream domain inthe hierarchy.T is also
referred to as time to live, or TTL.

We consider a continuous time random walk in which the time between walker
movements are exponentially distributed with rateψ, with the associated infinitesimal
generating matrixQ. Let ∆(i) be the out-degree of nodei andψ the walker rate. Then,
all diagonal elements inQ are equal to−ψ, andqij = ψ/∆(i) if there is a logical link
from i to j. We use uniformization [de Souza e Silva and Gail 2001] to obtain the metrics
of interest. LetP be theuniformized matrix, obtained fromQ asP = I + Q/Λ, where
Λ is a positive number greater than the maximum absolute valueof the elements in the
diagonal ofQ. Λ is also referred to as theuniformization rate.
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variable description

C number of cache-routers in the network
T time to live
H(T ) time to hit content
L(T ) lifetime of random walk in a domain
R(T ) probability of not hitting content byT
T0 time cost for accessing the publishing area
p probability that content is in domain

Tabela 1. Table of notation. Time to live, T , is integer when considering discrete
time random walks, and real when considering continuous tim e random walks.

Let ΩP (k) be the probability that, afterk transitions of the uniformized process,
the random walk had not hit the desired content. To computeΩP (k) we construct a
modified transition matrix̃P , assuming that the desired content is placed in a subset of
cache-routers of the domain. Letω be a column vector of sizeC whereωi = pi andpi
is the probability that cache-routeri stores the content,

∑C

i=1
pi = 1. To facilitate the

notation, we number the cache-routers wherepi > 0 with the highest indexes of matrix
P . In Figure 4(a) they are numbered 3,4 and 5. Then,P̃ is defined as

P̃ = P (I − (diag(ω))) (1)

wherediag(ω) is a matrix with the diagonal elements equal to vectorω and all other
elements equal to zero.̃P is a sub-stochastic matrix where the sum of the elements in
line i is the probability of not finding the content in the domain, inone step, given that
the random walk starts at cache-routeri. The element(i, j) of P̃ is the probability that a
random walker that starts at cachei moves to cachej in one step and then a cache miss
occurs atj.

(a) (b)

Figura 4. (a) Example of a domain with five cache-routers and ( b) Example of a
domain with eight cache-routers.

Let π(0) be the initial state probability vector indicating from where the search
starts in the domain. Thei-th element ofπ(0), πi(0), corresponds to the probability that
the random walk starts at cache-routeri. The(i, j) entry of matrixP̃ k characterizes the
probability of visiting statej after jumpk, given that the system starts at statei. Let
υ
P̃
(k) be a vector whosem-entry is the probability that afterk steps a miss occurs at
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cache-routerm, given that the random walk initial state isπ(0). The following recursion
can be used to computeυP̃ (k),

υ
P̃
(k) = υ

P̃
(k − 1)P̃ , k > 0 (2)

whereυP̃ (0) = π(0). Then,ΩP (k) is given by

ΩP (k) = υP̃ (k)U, k ≥ 0 (3)

whereU is a column vector with all elements equal to one.

Mean Time to Reach Content
Recall thatT is the maximum time to live of a random walk in a domain,T ∈ R. LetR(T )
be the probability that the content is not found byT units of time. Then, conditioning on
the number of transitions in the interval[0, T ],

R(T ) =

∞∑

n=0

ϕ(n, T )ΩP (n) (4)

whereϕ(n, T ) = exp(−ΛT )(ΛT )n/n! is the probability thatn jumps occur in the interval
[0, T ]. The number of jumps in the interval[0, T ] is Poisson distributed as we uniformized
Q.

Next, our goal is to compute the expected hitting time of a content,E[H(T )]. The
expected hitting time of a content is the sum of two components. The first component
characterizes the mean time to hit the content given that it is available in the domain, while
the second component characterizes the mean time to hit the content if it is unavailable in
the domain. In case the content is available in the domain, the lifetime of the random walk
in the domain (i.e., the searching time in the domain),L(T ), is the minimum between the
time until reaching the content andT . The mean ofL(T ) is given by

E[L(T )] =

∫ T

0

R(t)dt (5)

wherelimT→∞E[L(T )] is referred to asmean time to exitin the reliability literature, and
can be evaluated using standard techniques [de Souza e Silvaand Gail 2000].

Let p be the probability that the content is available in the considered domain. If
the content is available, the probability that the content is not found by timeT is R(T ).
If the content is unavailable, the random walk will take timeT inside the domain, and
additionalT0 units of time to reach the publishing area. Therefore, the expected hitting
time of a content is

E[H(T )] = (E[L(T )] + T0R(T )) p+ (T0 + T )(1− p) (6)

Replacing (4) into (6), and exchanging the order of the integration and summation,
yields, after simplification,

E[H(T )] =

(
∞∑

n=0

(
1−

n∑

m=0

e−ΛT (ΛT )
m

m!

)
Λ−1ΩP (n) + T0R(T )

)
p+ (T0 + T )(1− p)

(7)

The analysis above easily handles discrete time random walks, where time
between walkers movement is fixed.
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5. Experimental Results and System Analysis

In this section we present numerical results for a few examples in order to illustrate our
proposal and the existing tradeoffs in the choice of parameter values. In the development
of section 3, the time intervals between the random walker steps can be either independent
and exponentially distributed random variables or constant. For the numerical studies we
consider constant step values.

Our goals are to 1) show the impact of different system parameters on the mean
time to find content and 2) evaluate the average load on publishing area servers, which
impacts both the time to recover a content and the system’s scalability. We analyze a
simple two-tier setup wherein the publishing area servers have finite capacity. This sim-
ple architecture suffices to highlight the key points we wantto emphasize in this work
while keeping the model description short. From this scenario we also indicate how the
evaluation could easily consider multiple logical tiers.

Our reference topology is that illustrated in Figure 4(a). In this topology, there is
a single content that may be cached in one of the cache-routers 3, 4 or 5 with equal pro-
bability of residing in any of these three routers, given it is in this logical tier. Therefore,
pu = 1/3 for u = 3, 4, 5. With probability1 − p = 0.5, the content does not reside in the
tier and it takes and additionalT0 = 100 time units to find it in the publishing area. The
parameterT , the maximum time the random walker is allowed to search for the content
in a logical tier is varied between 1 and 200. The parameters values may vary according
to the experimental goals.

5.1. Single Domain Case

We illustrate how the mean time to find the content,E[H(T )], depends on different sys-
tem parameters. Figure 5(a) showsE[H(T )], obtained using (6), as a function ofT , for
different values ofp varying between 0 and 1, with increments of 0.2. The topologyand
the content placement are kept fixed. LetT ⋆ be the optimal value ofT that minimizes
E[H(T )]. As the probability that the content is available increases, T ⋆ increases. Clearly,
whenp = 0, T ⋆ = 0, since if the content is not available in the tier it is betternot to search
for it. On the other hand, when the content is always available (p = 1), T ⋆ → ∞. This is
because, in this example,T0 is large compared to the mean time to find the content in the
tier (E[H(∞)]). In this scenario, it will take less time, on average, for the random walker
to find the content in the domain, as opposed to find it in the publishing area servers, if
the walker is given enough time to search for the content in the domain (i.e., ifT is very
large). For values ofp between(0, 1), the optimum valueT ⋆ can be obtained from our
model as shown in Figure 5(a).

For any given value ofp, Figure 5(a) shows thatE[H(T )] first decreases and then
increases, except forp = 0 andp = 1, whenE[H(T )] always increases and decreases,
respectively. In any case,E[H(T )] asymptotically grows at rate1− p, as can be inferred
from equation (6). The impact ofT0 (the time cost for accessing the publishing area
servers) onE[H(T )] is illustrated in Figure 5(b), which showsE[H(T )] as a function of
T , for T0 ∈ [100, 200, . . . , 600]. AsT0 decreases, there is a subtle decrease of the optimal
time to find a content in the domain. This is because, as the time to access publishing
area servers increases, it is beneficial to remain longer in the domain before forwarding
the request to other domains.
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(a) (b)
Figura 5. Effect of p and T0 on the expected hitting time

Until now we analyzed the problem of content discovery from the clients perspec-
tive. The administrators of publishing areas, in turn, might worry about the traffic that is
incurred in their servers. If content is available in the cache-routers in a tier, the load from
that domain to the servers (assuming a single tier architecture) is proportional toR(T ),
the probability that users do not find the content in the tier by timeT . In more detail, letλ
andΛ be the average user load (number of requests for a content pertime unit) that arrives
to a tier and the average load flowing from the tier to the next in the hierarchy (or from
the tier to the publishing area), respectively. The number of requests per unit time served
inside the domain is clearlyλ− Λ andΛ = R(T )λ. For the plots we considerλ = 100.

Figures 6(a) and 6(b) show howΛ varies as a function ofT . Figures 6(a) considers
the reference scenario, modified so that content may be available at caches 2, 3, 4 and 5
with probability 0.25 at each, given the desired content is in the domain. Figures 6(b), in
turn, is generated from the topology with 8 caches shown in Figure 4(b), where content
may be available at caches 5, 6, 7 and 8 with probability 0.25 at each, given the desired
content is in the domain. The other parameters are the same asin the reference scenario.

Figures 6(a) and 6(b) indicate that there is a tradeoff between users interests and
providers time-cost when choosing the optimal value ofT . If T is selected so as to mi-
nimizeE[H(T )], the rate at which the publishing area servers are accessed,Λ might be
considerably large. However, a slight increase inT andE[H(T )] might yield significant
reductions inΛ. Therefore, we may minimizeE[H(T )] constrainingΛ to a given (relati-
vely small) value, that is, we may be able to keep the load at the publishing area servers at
a low value and yet avoiding a considerable increase in the time to retrieve the searched
content.

Note that in Figure 6(b)Λ is constant forT ≤ 3. This is because we are con-
sidering a discrete time random walk for the studies. In thiscase, the probability that
the content is found inside the domain is zero ifT is smaller than the distance between
the source of the random walker and the cache-router that mayhave the content. In a
continuous time random walk, in turn,R(T ) is strictly decreasing with respect toT .

We may summarize the above findings as follows. If content is available in a tier
with high probability, it may be advantageous to increase the time the random walker is
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Figura 6. Probability of not hitting content by time T , E[H(T )], and Λ, for (a) 5
cache topology, (b) 8 cache topology.

allowed to search for a content in the tier to reduce the load at the publishing area servers.
On the other hand, the expected time to find the content may increase. Quantifying these
tradeoffs is a contribution of our work.

5.2. Multiple Domain Case

In the previous section we assumed a constant timeT0 to retrieve a content from the pu-
blishing area servers. In what follows we consider a scenario where content that is not
found in a domain is forwarded to publishing area servers with limited capacity. There-
fore, the time cost to access the publishing area servers,T0, will now be a function of
the amount of trafficΛ that is directed to the publishing area servers (which in turn is a
function ofR(T )). To illustrate the impact of the load of users on the publishing area
servers, let us a consider a simple M/M/1 model for the server, with associated service
capacityµ. Then, the mean waiting time experienced by users accessingthe server is
W = 1/(µ − Λ). Figure 7(a) shows howW varies as a function ofΛ. In what follows,
for illustration purposes, we setµ = 40 andT0 = 1000W ,

T0 = 1000/(µ− R(T )λ) (8)

Figure 7(b) illustrates the impact of the service capacity on the mean waiting time ex-
perienced by users and shows howE[H(T )] varies as a function ofT . The qualitative
behavior ofE[H(T )] is the same as the one observed previously, and the insights obtai-
ned in Section 5.1 about the tradeoff in the choice ofT still apply. Note that an increase
in R(T ), the probability of not finding the searched content in the tier (not shown in the
figure) may degrade users performance, as it may lead to server overload. In particular,
if T is small (e.g.,T = 1), E[H(T )] grows unbounded withλ. Due to space limitations
we were only able to discuss a few examples aiming at describing our proposal and the
existing design tradeoffs. Our approach, however, can handle multiple domains and user
loads as we briefly sketch below. From the results of section 4and given the user loads,
we can obtain the domains that hold copies of the content.R(T ) is then used to obtain the
loads at each domain as well as at the publisher. Finally, given the loads at the different
domains,E[H(T )] is obtained in a top down fashion, starting from the top and moving to
the lowest level domains.
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Figura 7. (a) Average server processing time as a function of Λ, (b) mean time to
find content, accounting for server capacity µ = 40.

6. Conclusion

Information centric networks are gaining considerable attention from researchers and
practitioners due to their scalability and robustness properties. Nonetheless, there are
still important challenges in the design, modeling and analysis of such networks. From
the design perspective, one of the challenges is to determine how to fill out the routing
tables. From the modeling and analysis perspective, the challenges are associated to the
large number of routers envisioned in ICNs. In this paper, wehave proposed a novel de-
sign for ICNs that is built on top of random walks and hierarchical tiers (domains) to cope
with the explorationversusexploitation tradeoff involved in content search.

Our model computes metrics such as mean time to find a content and evaluate
existing tradeoffs to tune the parameters of the architecture we propose. In this present
work we focus on the performance tradeoffs of the architecture. However, our analytical
model can be extended to study the scalability of the proposed architecture with respect to
others in the literature. For instance, as the user load for acontent grows what is the overall
increase in the expected time to find a content as compared to aP2P architecture. This
work also opens additional avenues for future research. Onesuch problem is to determine
the impact of parallel random walks across tiers at the same level of the hierarchy as well
as across different levels.
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