Anais 7

Safe Self-Evolving Embedded Softwar e via System
Virtualization

Stefan Groesbrink and Franz J. Rammig

Heinz Nixdorf Institut — Universitat Paderborn, Bdabrn, Germany
{s. groesbrink, franz} @pb. de

Abstract. Sdf-evolving embedded software is assumed as a fundamental paradigm in
designing Cyber Physical Systems (CPS). CPSs are characterized as a combination of
interconnected embedded systems with the Cyber Space via Cloud computing. System
virtualization is argued to be a promising approach to allow for safe self-evolving software. A
system virtualization platform with an adaptive yet safe and real-time-capable resource
management scheme based on a multi-mode protocol is proposed in this paper. Finally first
results are presented.

1. Introduction

Cyber Physical Systems (CPS) can be seen as aoaappto combine distributed
embedded systems with globally available data andes [Ra2012]. Due to the tight
coupling of the involved embedded systems (ES)har tphysical environment such
systems have to continuously adapt to the evoleiragacteristics of their environment.
In this sense, a CPS needs to be evolutionary lyrenaThe respective physical
environment can be characterized by a set of paeasbeing divided in such ones that
are under control of an ES belonging to the CPSsaisti ones being defined externally.
Whenever changes in the externally defined parasefehe physical environment are
observed that no longer can be handled by themuvezsion of the respective ES, then
this ES as a constituting part of the CPS has tmobdified. A CPS with its access to
globally available services can be interpreted aspecial case of Service-Oriented
Computing (SOC). In distinction from classical S@Ese services have to be linked in
as locally running components. The reason is tleeckonnection to the controlled
physical environment of an ES, which strictly reqai predictable real-time behavior.
Numerous open questions are subject of currenareseincluding identifying the need
for adaptation [Ca2012], look-up for matching comeots [MS2004], and ultra-late
dynamic binding techniques [Ma2009]. In this papwerare focusing on a special aspect
to support the dependability of such evolving aestures. In particular we are
concentrating on a proper real-time system softwamgironment enabling strict
separation of dynamically interchangeable compaéoin the rest of an ES. This is
enforced by application of system virtualizatiomsed on our real-time virtualization
platform Proteus [BK2009]. The rest of the papesriganized as follows: In Sect. 2 the
scenario we are dealing with is characterized wihil8ect. 3 the resource management
scheme for a virtualization platform to supportesabmponent adaptation in a CPS is
presented. First results are provided in Sect. dev@ect. 5 is a short summary.



8 IIT Workshop de Sistemas Distribuidos Autdnomicos

2. An Adaptive CPS Scenario

A CPS can be seen as a network of agents. Each agsriocally as a real-time system
being directly connected to its local sensors actdadors and providing some locally
real-time-capable services, typically closed-logpleations. In a CPS, it cannot be
assumed that the parameters constituting the emagat remain within a predefined
domain over the entire lifetime of the system. Asrsas those parameters are running
out of such bounds the respective model of therenment is no longer valid. As a
consequence some system adaptation is needed.e/Nes#icting to component-based
software systems where the entire software enwisort is composed of well-defined
components with well-defined and highly standardizeterfaces. Any kind of
adaptation then means removing, adding, or exchgnguch components. In the
context of this paper we are concentrating onctiedlenge to ensure safe adaptation by
means of system virtualization and assume thatyewenolved embedded system is
running on top of a real-time-capable virtualizatiplatform. We reserve dedicated
partitions for components that may be replaced evbther partitions are reserved for
static constituents of the embedded system. Dukeadsolation mechanisms enforced
by the virtualization platform a potentially maligomponent that has been dynamically
loaded cannot harm components running in otheitjpaid. Even any kind of inter-
partition communication can be subject to additiahcks.

3. Safe CPS Adaptation Based on System Virtualization

We propose to follow real-time system virtualizati@as for example realized by our
hypervisor Proteus [BK2009]. According to systemtualization, a hypervisor allows
the sharing of the underlying hardware among mleltjperating systems (OS) executed
within isolated virtual machines (VM). Multiple esting software artifacts are
combined to a system of systems. Such a virtuadizadrchitecture is well-suited for
CPSs, primarily due to capabilities such as integmaof legacy code, scalability,
transparent use of multiple processor system-opschi cross-platform
portability/migration, and isolation of applicat®nespecially for open systems, in
which subsystems may be added or removed at runfline coexistence of mixed
criticality levels (e.g. safety-critical, missiomitccal and subsystems of minor
importance) has been identified as one of the ¢owedational concepts for CPSs
[Ba2010] and system virtualization provides a redtway to support mixed criticality
by consolidating systems of different criticaligwkls in separated VMs.

CPSs adjust their goals and behavior at runtimeordoty to changes of the
environment or corrections received from a higlesel, resulting in varying resource
usage patters, and therefore require a dynamicmesonanagement. This work focuses
on safe resource partitioning and exploits systeimualization for a dynamic
reallocation of resources.In previous work, thexille Resource Manager (FRM) has
been developed in our group [Ob2010] and was riceatlapted to system
virtualization [Gr2012]. The FRM approach assuntes tomponents are available in
various profiles, which are functionally more osdeequivalent. However, they vary
substantially concerning nonfunctional properti€sofiles represent implementation
alternatives or service levels with differing resmu requirements, as they exist for
example in case of optimization applications (relaptimality for lower resource
utilization) or control applications with variablrequency. Task profiles define



Anais 9

minimum and maximum resource requirements: a taskanly allocate resources in
this range. VM profiles unite the active profile§ the VM's tasks to specify the
allocation limits of a VM. Considered resources aoeputation time, memory, and
access to 1/0O devices. The FRM is in charge of dwig between the profiles at
runtime.

System virtualization implies resource managemestisions on two levels. The
hypervisor retains the ultimate control of the heaick resources and assigns resource
shares to the VMs. The OSs on the second levejragise obtained resources to their
tasks. A FRM component is therefore added to Hoththipervisor and the OS. The OS-
FRMs inform the Hypervisor-FRM about the dynamisawrce requirements and
current resource utilization. The Hypervisor-FRKkgsource allocation among the VMs
is based on this information. The Hypervisor-FRMorms the OS-FRMs about the
assigned resources, which facilitates each OS-FRkhdanage its resource share. This
results in a partitioned approach with decisionsoth levels (hierarchical FRM) and
communication in both directions.

The possibility to switch between profiles on tdskel and on VM level enables a
dynamic resource assignment across VM bordersarticplar, reserved but temporarily
unused resources can be assigned to other taghksietasks of other VMs. If resources
were reallocated from a task to another task a@ddbsource-lending task at a later point
in time needs more resources than left, a resaroo#ict occurs and has to be solved
under real-time constraints. To achieve this, arepiance test precedes each profile
switch and a resource reallocation is accepteddfanly if a feasible reconfiguration is
identified. This special reconfiguration is a sepmfile switches that activate a fallback
configuration, which fulfills the worst-case reqgnmnents of all tasks. It is not sufficient
to identify such a reconfiguration plan; the aceepe test checks whether the time
required executing it does not lead to a timingineament violation.

4. Results

The approach is currently integrated into our teaé multi-core hypervisor Proteus
and our real-time operating system ORCOS for 32rbiilti-core PowerPC 405
platforms. A low memory footprint and a high configbility characterize Proteus. A
configuration with the base functionality requidek kilobytes and a configuration with
all functional features requires 15 kilobytes. Therrupt latencies and the execution
times for synchronization primitives, hypercall dérs, emulation routines, and virtual
machine context switch are all in the range of meds of processor cycles. The detailed
WCET analysis of all routines makes it possibledédermine the WCET of a hosted
application. Executed with a clock speed of 300 Mélxirtual machine context switch
takes 1.3us. Virtualization increases the interrupt lateritlye additional latency is 0.5
us for a programmable timer interrupt and @s3for a system call interrupt.

Proteus supports both full virtualization and pataalization, without relying on
special hardware support for virtualization. Acdngdto paravirtualization, modified
OSs that are able to communicate with the hypenas®hosted. The implementation of
the hierarchical FRM requires paravirtualizatiomce the OS-FRMs have to pass
information to the hypervisor. The requirement todify the OS is outweighed by the
advantages in terms of efficiency, run-time flekipj and cooperation of hypervisor



10 IIT Workshop de Sistemas Distribuidos Autdnomicos

and OS. A specific advantage of paravirtualization real-time systems is the
possibility to apply dynamic real-time schedulinggaithms. The emulation of
privileged instructions is the core functionalitf the hypervisor and is requested via
interrupt (full virtualization) or hypercall (paretualization). Paravirtualization speeds
up the execution in average by 39%. A library pdeg the paravirtualization
communication primitives in order to reduce the rfication effort. If legal or technical
issues preclude the modification of an OS, it camdbsted fully virtualized with a fixed
resource allocation.

5. Summary

System virtualization may serve as an appropriaganms to provide for safe self-
evolving software in the context of CPS. Based onwrtualization platform Proteus
we are building such a system that offers the rsacgservices with little overhead and
an affordable footprint. We propose a resource mpamant scheme for system
virtualization that overcomes the limitations otst resource allocation. CPSs adjust
their goals and behavior at runtime according tanges of the environment and are
open systems, resulting in varying resource remerdgs, and therefore demand an
adaptive resource management. The two-level aothiee offers flexibility across VM
borders and adds runtime adaptability with mairgdivM isolation. Main feature is a
mode change protocol with real-time conflict resioln. Paravirtualization is exploited
in order to reduce the performance overhead amhable a cooperation of hypervisor
and OS. To address the limited applicability ofgeatualization, Proteus is designed
for the co-hosting of paravirtualized and fullytuialized OSs.

References

[MS2004] Maximilien, E. M. and Singh, M. P. (200 Framework and Ontology for
Dynamic Web Services Selection”. In: IEEE Inter@eimputing, 8(5), pp. 84-93.

[Ca2012] Calinescu, R. et al. (2012) “Self-AdaptiBoftware Needs Quantitative
Verification at Runtime”. In: Communications of tA&M, 55(9), pp. 69-77.

[Ma2009] Mabrouk, N. B. et al. (2009) “QoS-awareiee Composition in Dynamic
Service Oriented Environments”. In: Internationain®rence on Middleware.

[Gr2012] Groesbrink, S. et al. (2012) “Towards Atz Resource Management for
Virtualized Real-Time Systems”. In: Workshop on Atiee and Reconfigurable
Embedded Systems (CPSWeek).

[Ra2012] Rammig, F. (2012) “Self-Coordination ashn& amental Concept for Cyber
Physical Systems”. In: 2nd SBC Workshop on Autoromistributed Systems -
Wo0SIDA, Ouro Preto, Brazil, pp. 45-48.

[Ob2010] Oberthdr, S. et al. (2010) “Flexible Reseu Management for Self-X
Systems: An Evaluation”. In: Workshop on Self-Ongarg Real-Time Systems.

[Ba2010] Baruah, S. et al. (2010) “Towards the Desf Certifiable Mixed-Criticality
Systems”. In: Real-Time Technology and Applicati@ysnposium.

[BK2009] Baldin, D. and Kerstan, T. (2009) ,ProteasHybrid Virtualization Platform
for Embedded Systems*. In: International Embeddgstens Symposium.



