
 Anais 7

Safe Self-Evolving Embedded Software via System
Virtualization

Stefan Groesbrink and Franz J. Rammig

Heinz Nixdorf Institut – Universität Paderborn, Paderborn, Germany
{s.groesbrink,franz}@upb.de

Abstract. Self-evolving embedded software is assumed as a fundamental paradigm in
designing Cyber Physical Systems (CPS). CPSs are characterized as a combination of
interconnected embedded systems with the Cyber Space via Cloud computing. System
virtualization is argued to be a promising approach to allow for safe self-evolving software. A
system virtualization platform with an adaptive yet safe and real-time-capable resource
management scheme based on a multi-mode protocol is proposed in this paper. Finally first
results are presented.

1. Introduction

Cyber Physical Systems (CPS) can be seen as an approach to combine distributed
embedded systems with globally available data and services [Ra2012]. Due to the tight
coupling of the involved embedded systems (ES) to their physical environment such
systems have to continuously adapt to the evolving characteristics of their environment.
In this sense, a CPS needs to be evolutionary by nature. The respective physical
environment can be characterized by a set of parameters being divided in such ones that
are under control of an ES belonging to the CPS and such ones being defined externally.
Whenever changes in the externally defined parameters of the physical environment are
observed that no longer can be handled by the current version of the respective ES, then
this ES as a constituting part of the CPS has to be modified. A CPS with its access to
globally available services can be interpreted as a special case of Service-Oriented
Computing (SOC). In distinction from classical SOC these services have to be linked in
as locally running components. The reason is the close connection to the controlled
physical environment of an ES, which strictly requires predictable real-time behavior.
Numerous open questions are subject of current research, including identifying the need
for adaptation [Ca2012], look-up for matching components [MS2004], and ultra-late
dynamic binding techniques [Ma2009]. In this paper we are focusing on a special aspect
to support the dependability of such evolving architectures. In particular we are
concentrating on a proper real-time system software environment enabling strict
separation of dynamically interchangeable components from the rest of an ES. This is
enforced by application of system virtualization, based on our real-time virtualization
platform Proteus [BK2009]. The rest of the paper is organized as follows: In Sect. 2 the
scenario we are dealing with is characterized while in Sect. 3 the resource management
scheme for a virtualization platform to support safe component adaptation in a CPS is
presented. First results are provided in Sect. 4 while Sect. 5 is a short summary.

 8 III Workshop de Sistemas Distribuídos Autônomicos

2. An Adaptive CPS Scenario

A CPS can be seen as a network of agents. Each agent acts locally as a real-time system
being directly connected to its local sensors and actuators and providing some locally
real-time-capable services, typically closed-loop applications. In a CPS, it cannot be
assumed that the parameters constituting the environment remain within a predefined
domain over the entire lifetime of the system. As soon as those parameters are running
out of such bounds the respective model of the environment is no longer valid. As a
consequence some system adaptation is needed. We are restricting to component-based
software systems where the entire software environment is composed of well-defined
components with well-defined and highly standardized interfaces. Any kind of
adaptation then means removing, adding, or exchanging such components. In the
context of this paper we are concentrating on the challenge to ensure safe adaptation by
means of system virtualization and assume that every involved embedded system is
running on top of a real-time-capable virtualization platform. We reserve dedicated
partitions for components that may be replaced while other partitions are reserved for
static constituents of the embedded system. Due to the isolation mechanisms enforced
by the virtualization platform a potentially malign component that has been dynamically
loaded cannot harm components running in other partitions. Even any kind of inter-
partition communication can be subject to additional checks.

3. Safe CPS Adaptation Based on System Virtualization

We propose to follow real-time system virtualization, as for example realized by our
hypervisor Proteus [BK2009]. According to system virtualization, a hypervisor allows
the sharing of the underlying hardware among multiple operating systems (OS) executed
within isolated virtual machines (VM). Multiple existing software artifacts are
combined to a system of systems. Such a virtualization architecture is well-suited for
CPSs, primarily due to capabilities such as integration of legacy code, scalability,
transparent use of multiple processor system-on-chips, cross-platform
portability/migration, and isolation of applications, especially for open systems, in
which subsystems may be added or removed at runtime. The coexistence of mixed
criticality levels (e.g. safety-critical, mission-critical and subsystems of minor
importance) has been identified as one of the core foundational concepts for CPSs
[Ba2010] and system virtualization provides a natural way to support mixed criticality
by consolidating systems of different criticality levels in separated VMs.

CPSs adjust their goals and behavior at runtime according to changes of the
environment or corrections received from a higher level, resulting in varying resource
usage patters, and therefore require a dynamic resource management. This work focuses
on safe resource partitioning and exploits system virtualization for a dynamic
reallocation of resources.In previous work, the Flexible Resource Manager (FRM) has
been developed in our group [Ob2010] and was recently adapted to system
virtualization [Gr2012]. The FRM approach assumes that components are available in
various profiles, which are functionally more or less equivalent. However, they vary
substantially concerning nonfunctional properties. Profiles represent implementation
alternatives or service levels with differing resource requirements, as they exist for
example in case of optimization applications (relax optimality for lower resource
utilization) or control applications with variable frequency. Task profiles define

 Anais 9

minimum and maximum resource requirements: a task can only allocate resources in
this range. VM profiles unite the active profiles of the VM's tasks to specify the
allocation limits of a VM. Considered resources are computation time, memory, and
access to I/O devices. The FRM is in charge of switching between the profiles at
runtime.

System virtualization implies resource management decisions on two levels. The
hypervisor retains the ultimate control of the hardware resources and assigns resource
shares to the VMs. The OSs on the second level assign the obtained resources to their
tasks. A FRM component is therefore added to both the hypervisor and the OS. The OS-
FRMs inform the Hypervisor-FRM about the dynamic resource requirements and
current resource utilization. The Hypervisor-FRM's resource allocation among the VMs
is based on this information. The Hypervisor-FRM informs the OS-FRMs about the
assigned resources, which facilitates each OS-FRM to manage its resource share. This
results in a partitioned approach with decisions on both levels (hierarchical FRM) and
communication in both directions.

The possibility to switch between profiles on task level and on VM level enables a
dynamic resource assignment across VM borders. In particular, reserved but temporarily
unused resources can be assigned to other tasks, even to tasks of other VMs. If resources
were reallocated from a task to another task and the resource-lending task at a later point
in time needs more resources than left, a resource conflict occurs and has to be solved
under real-time constraints. To achieve this, an acceptance test precedes each profile
switch and a resource reallocation is accepted if and only if a feasible reconfiguration is
identified. This special reconfiguration is a set of profile switches that activate a fallback
configuration, which fulfills the worst-case requirements of all tasks. It is not sufficient
to identify such a reconfiguration plan; the acceptance test checks whether the time
required executing it does not lead to a timing requirement violation.

4. Results

The approach is currently integrated into our real-time multi-core hypervisor Proteus
and our real-time operating system ORCOS for 32-bit multi-core PowerPC 405
platforms. A low memory footprint and a high configurability characterize Proteus. A
configuration with the base functionality requires 11 kilobytes and a configuration with
all functional features requires 15 kilobytes. The interrupt latencies and the execution
times for synchronization primitives, hypercall handlers, emulation routines, and virtual
machine context switch are all in the range of hundreds of processor cycles. The detailed
WCET analysis of all routines makes it possible to determine the WCET of a hosted
application. Executed with a clock speed of 300 MHz, a virtual machine context switch
takes 1.3 µs. Virtualization increases the interrupt latency. The additional latency is 0.5
µs for a programmable timer interrupt and 0.3 µs for a system call interrupt.

Proteus supports both full virtualization and paravirtualization, without relying on
special hardware support for virtualization. According to paravirtualization, modified
OSs that are able to communicate with the hypervisor are hosted. The implementation of
the hierarchical FRM requires paravirtualization, since the OS-FRMs have to pass
information to the hypervisor. The requirement to modify the OS is outweighed by the
advantages in terms of efficiency, run-time flexibility, and cooperation of hypervisor

 10 III Workshop de Sistemas Distribuídos Autônomicos

and OS. A specific advantage of paravirtualization for real-time systems is the
possibility to apply dynamic real-time scheduling algorithms. The emulation of
privileged instructions is the core functionality of the hypervisor and is requested via
interrupt (full virtualization) or hypercall (paravirtualization). Paravirtualization speeds
up the execution in average by 39%. A library provides the paravirtualization
communication primitives in order to reduce the modification effort. If legal or technical
issues preclude the modification of an OS, it can be hosted fully virtualized with a fixed
resource allocation.

5. Summary

System virtualization may serve as an appropriate means to provide for safe self-
evolving software in the context of CPS. Based on our virtualization platform Proteus
we are building such a system that offers the necessary services with little overhead and
an affordable footprint. We propose a resource management scheme for system
virtualization that overcomes the limitations of static resource allocation. CPSs adjust
their goals and behavior at runtime according to changes of the environment and are
open systems, resulting in varying resource requirements, and therefore demand an
adaptive resource management. The two-level architecture offers flexibility across VM
borders and adds runtime adaptability with maintained VM isolation. Main feature is a
mode change protocol with real-time conflict resolution. Paravirtualization is exploited
in order to reduce the performance overhead and to enable a cooperation of hypervisor
and OS. To address the limited applicability of paravirtualization, Proteus is designed
for the co-hosting of paravirtualized and fully virtualized OSs.

References

 [MS2004] Maximilien, E. M. and Singh, M. P. (2004) “A Framework and Ontology for
Dynamic Web Services Selection”. In: IEEE Internet Computing, 8(5), pp. 84-93.

 [Ca2012] Calinescu, R. et al. (2012) “Self-Adaptive Software Needs Quantitative
Verification at Runtime”. In: Communications of the ACM, 55(9), pp. 69-77.

[Ma2009] Mabrouk, N. B. et al. (2009) “QoS-aware Service Composition in Dynamic
Service Oriented Environments”. In: International Conference on Middleware.

[Gr2012] Groesbrink, S. et al. (2012) “Towards Adaptive Resource Management for
Virtualized Real-Time Systems”. In: Workshop on Adaptive and Reconfigurable
Embedded Systems (CPSWeek).

[Ra2012] Rammig, F. (2012) “Self-Coordination as Fundamental Concept for Cyber
Physical Systems”. In: 2nd SBC Workshop on Autonomic Distributed Systems -
WoSiDA, Ouro Preto, Brazil, pp. 45-48.

[Ob2010] Oberthür, S. et al. (2010) “Flexible Resource Management for Self-X
Systems: An Evaluation”. In: Workshop on Self-Organizing Real-Time Systems.

[Ba2010] Baruah, S. et al. (2010) “Towards the Design of Certifiable Mixed-Criticality
Systems”. In: Real-Time Technology and Applications Symposium.

[BK2009] Baldin, D. and Kerstan, T. (2009) „Proteus, a Hybrid Virtualization Platform
for Embedded Systems“. In: International Embedded Systems Symposium.

