
 Anais 31

Towards Open Self-Adaptation in a Distributed

Multimedia Middleware Platform

José Augusto de Medeiros
1
, Adilson Barbosa Lopes

1
, Carlos Eduardo da Silva

2

1
Departamento de Informática e Matemática Aplicada (DIMAp) – Universidade Federal

do Rio Grande do Norte (UFRN)

59.072-970 – Natal – RN – Brazil

2
Escola de Ciências e Tecnologia (ECT) – Universidade Federal do Rio Grande do

Norte – 59072-970 – Natal – RN - Brazil

jamedeiros@gmail.com, adilson@dimap.ufrn.br, carlos.silva@ect.ufrn.br

Abstract. A self-adaptive software system uses a sequence of actions (called

adaptation plan) to modify its structure and/or behavior in response to

change. Normally, such actions are defined at development time, resulting in a

closed adaptation, where all possible plans are well known beforehand. In this

paper we propose the use of a process generation framework based on AI

planning and model transformation for achieving open adaptation in a

distributed multimedia platform.

1. Introduction

Self-adaptation has been increasingly receiving attention from different research

communities as the means for dealing with the increasing complexity and dynamism of

today’s software system. Among the techniques employed to achieve self-adaptation, we

focus our attention to feedback control loops, which has been recognized as an

important factor in software management and evolution, as show by [Brun et al. 2009].

This technique is composed of four basic activities, which provide a fundamental role in

managing software self-adaptation. The cycle starts with a collection of data about the

system. This data is then analyzed to determine whether an adaptation is necessary.

Once an adaptation is needed, an adaptation plan is defined, and then executed for

modifying the system.

Those ideas have been applied in the domain of distributed multimedia system

through the development of the Cosmos Framework [Lopes 2006]. This framework was

designed to support configuration and management of resources in a distributed

environment. Cosmos adopts a closed adaptation model, where a set of plans for

adapting the system are defined at development time. However, it is difficult to

anticipate at design-time all possible contexts of adaptations. For example, resources

considered during the design of the adaptation plan may not be available during the

system execution [Da Silva and De Lemos, 2011].

In order to effectively deal with the variability and complexity of today’s

environment, self-adaptive software system must gain some autonomous characteristics

being able to generate adaptation plans during runtime, and for such, the use of artificial

intelligence becomes an interesting approach. In this context, our goal is to change the

 32 III Workshop de Sistemas Distribuídos Autônomicos

adaptation model in the Cosmos framework to an open adaptation model, where the

adaptations plans are produced in runtime [Oreizy et al. 1999]. This will be achieved

through a refactoring of the Cosmos framework and its integration with an instantiation

of a framework for the dynamic generation of processes presented by [Da Silva, 2009].

This paper presents the refactoring of Cosmos framework for supports the open

adaptation model through the use of Process Generator framework

2. Background: A Framework for Process Generation

The framework for dynamic generation of process presents a reusable solution for

generation of adaptation plans, and can be instantiated into different application

domains. The framework is based on three technologies, model transformation, artificial

intelligence (AI) planning and workflow management. Model transformation is used to

translate domains specific model into AI planning problems, which are then used to

create a plan that is translated into a workflow and executed by a workflow management

system. The framework is composed of three main elements: a domain model, a

reference process and a supporting infrastructure.

The domain model encompasses domain independent and domain dependent

models, metamodels and transformations rules that are used during the generation. The

reference process describes the main activities associated with the generation, while the

supporting infrastructure identifies the different components that provide support for the

execution of the references process. These constitute the basis of the framework and are

customized according with the application domain where the framework is being

instantiated.

According to [Da Silva 2009], the instantiation of the framework for process

generation requires the definition of some models and transformation based on the

application domain. In this way, we need to create: a metamodel that captures the

elements of the application domain; a planning domain model according to this

metamodel; a set of transformations rules for translating models that conform to this

metamodel into planning problems; and a set of tasks templates that correspond to

several adaptations actions that can be performed in the domain and will be used to

compose an adaptation plan.

3. The Proposed Solution

Our main purpose is to incorporate into Cosmos the ability to generate adaptation plans

during runtime. To this end, we are integrating Cosmos with a framework for dynamic

generation of process, which required some modifications in the Cosmos Framework. In

order to accommodate these modifications, we have conducted a refactoring of Cosmos.

In the sequel, we present an overview of our proposed Cosmos architecture, which

serves as execution environment for generated adaptation plans.

Figure 1 show an overview of our proposed solution. The activities of the

feedback loop are delegated to specialized elements. Cosmos has a Model Manager

component, which is responsible for maintaining a model of the system that is used to

support state monitoring and control of system during execution. Based on this model,

Probes are put in place for monitoring the components of running application. These

Probes collect QoS related data that is fed into QoS Manager component.

 Anais 33

Figure 1. Cosmos Framework Overview.

The QoS Manager analyzes the collected data based on predetermined criteria

and, if there is a need to adapt, informs the Configurator. At this point, the Probes are

deactivated, while the Configurator is activated. It selects a new configuration for the

system and sends it, together with a model of the current system configuration to the

Process Generator component. The Process Generator component then generates and

executes an adaptation plan through the Configurator component, which is responsible

for effecting adaptations on the system components and for updating the Model

Manager with a model of the new configuration. Once an adaptation is successfully

completed, the Probes are reactivated and the system resumes its operation.

In order to support the new adaptation process, we modified the Cosmos

component model so it can represent both the running system and its architecture, and to

do so, we extended the model used by xADL architectural language, adding the

architectural elements of the Cosmo framework. With the changes in the representation

of Cosmos component model, we updated the Model Manager accordingly. Also we

modified the Configurator component in order to support to new adaptation model, in

this adjustment, we excluded interfaces that were not in use and we added other

interfaces that are used during adaptation.

4. Related Work

Fonseca et al. [Fonseca, Di Beneditto e Werner, 2012] presents a mechanism for the

execution of adaptation plans that generated by a planner. The generated plan is

transformed into adaptation actions that are enacted through call to the API offered by

the execution. If an error occurs, the actions that were executed are undone and the

effected components returned to the initial state. In our approach the Process Generator,

which contains a planner, generates and executes the adaptation plans through the

integration interface of Cosmos framework. In case of failures during execution of the

adaptation process, a new adaptation plan is generated and executed.

Tajalli et al. [Tajalli et al. 2010] presents a Plan-based Layered Architecture for

Software Model-driven Adaptation. Their approach utilizes an ADL together with

planner to enable dynamic replanning in the architectural domain. This architecture

collects data from system components and analyzes these data to check for the need to

adapt. With need for adaptation, it creates an adaptation plan to be executed affecting

the system components. An architectural middleware platform to support was

introduced, however, no implementation details are given of this middleware. In our

 34 III Workshop de Sistemas Distribuídos Autônomicos

approach besides realize adaptations through a planner, we focus on do it in specialized

components to obtain a low coupling. With this, we can use other planners and QoS

Managers that they provide integration interfaces.

5. Conclusion

This work has been based on the refactoring of the Cosmos framework, in which we

incorporated the use of an ADL for representing system configurations, adjustments for

several Cosmos components to support a new model representation. Such changes were

needed for integrating Cosmos with a Process Generator framework in order to include

supports to a new adaptation model.

To demonstrate the use of the Cosmos framework, we are preparing a broadcast

video system, composed of transmission and reception components. From this

application we may see and evaluate the use of an open adaptation model in the Cosmos

framework.

References

Blair, G. Bencomo, N. and France, R. B. (2009). Models@run.time. IEEE Computer,

42(10):22-27.

Brun, Y. et al. (2009). Engineering Self-Adaptive Systems through Feedback Loops.

Software Engineering for Self-Adaptive Systems, pp 48-70. Springer.

Da Silva, C. E. and De Lemos, R. (2011). A framework for Automatic Generation of

Process for Self-Adaptive Software Systems. Special Issue on Automatic and Self-

Adaptive Systems at Informatica, vol. 35, pp 3-13.

Fonseca, F. L., Di Beneditto, M. E. M., Werner, C. M. L. (2012). Um mecanismo

extensível para a execução de um plano de reconfiguração arquitetural sob o

framework OSGi+IPOJO. Nata: UFRN.

Lopes, A. B. (2006). Um Framework para Configuração e Gerenciamento de Recursos e

Componentes em Sistemas Multimídia Distribuídos Abertos. Thesis (Ph.D).

Faculdade de Engenharia Elétrica e de Computação, Universidade Estadual de

Campinas, Campinas.

Oreizy, P. et al. (1999). An architecture-based approach to self-adaptive software.

Intelligent Systems and Their Applications, IEEE, v.14, p.54-62.

Tajalli, H., Garcia, J., Edwards, G., and Medvidovic, N. (2010). PLASMA: A Plan-

based Layered Architecture for Software Model-driven Adaptation. Automated

software, 467-476.

