
 Anais 43

Detection of Bidimensional Hierarchical Heavy Hitters in
OpenFlow Networks

Mário Augusto da Cruz1, Sand Luz Corrêa1 Kleber Vieira Cardoso1

1Instituto de Informática (INF) – Universidade Federal de Goiás (UFG)
Caixa Postal 131 – 74.001-970 – Goiânia – GO – Brasil

{marioaugusto, sand, kleber}@inf.ufg.br

Abstract. Traditional approaches for detecting Hierarchical Heavy Hitters
(HHHs) can be also employed in OpenFlow Networks. However, OpenFlow
devices offer the opportunity to develop new solutions. In this paper, we discuss
how online pattern matching can be different in OpenFlow networks, mainly
when transporting large traffic aggregates. In addition, we present a new me-
chanism for online detection of Hierarchical Heavy Hitters in networks based
on OpenFlow switches. Our proposal is able to detect bidimensional HHHs
based on source and destination IP addresses.

1. Introduction
One of the key challenges in traffic monitoring is to detect high-volume traffic aggregates
in real-time. Such aggregates often contain different ranges of IP addresses, i.e. they
need to be treated in a hierarchical manner. Besides, these aggregates may involve the
combination of different IP header fields, i.e. they may be multidimensional. In the
literature, this problem is referred to as Hierarchical Heavy Hitters (HHHs) detection.

In the last decade, many solutions have been developed for the detection
of HHHs under the constraints of the traditional IP networks [Cormode et al. 2003,
Zhang et al. 2004, Hershberger et al. 2005]. In most of these solutions, the detection of
HHHs is typically implemented in a network appliance which is able to process packet he-
aders at least until the network layer and, thus, packet headers are assumed to be available
to be checked when necessary. In general, some sampling technique is also employed in
order to avoid computation overhead and forwarding delay, specially in high-speed links.

Applying traditional HHH detection solutions to Software-Defined Networks,
such as OpenFlow (OF) networks, is not straightforward. In OF networks, basic header
processing and forwarding are implemented on data plane of OF switches, and complex
computations, such as HHH detection, are implemented externally in a controller. As
a result, in OF switches, the sampling techniques cannot be applied in the conventional
way, since most of the packets will not be available to the main processing unit, i.e. the
controller. Theoretically, all packets can be sent to the controller, however this is far from
realistic due to performance issues, mainly in high-speed networks. Besides, OF devices
offer the opportunity to count rule matches in a per packet basis, which it is not availa-
ble in traditional networks. Therefore, the HHH detection problem needs to be revisited
taking in consideration the features of OpenFlow networks.

In [Jose et al. 2011], the authors have proposed an algorithm for unidimensional
HHH identification as part of a measurement framework focused on OF switches. Basi-

 44 IV Workshop de Pesquisa Experimental da Internet do Futuro

cally, the proposed mechanism reads packet counters provided by switches. This infor-
mation is used to find out the HHHs of the interval. The algorithm presents a fair tradeoff
between measurement accuracy and switch overhead. However, the time for effectively
identify HHH in large traffic aggregates is far from the desirable, as we show in our eva-
luation section. Recently, the authors of [Mitzenmacher et al. 2012] have proposed an
algorithm with worst-case time and space bounds better than the previous algorithms in
the literature. However, this algorithm needs to update rules on a per-packet basis, which
is not viable in OF switches.

In this paper, we propose a new mechanism for the detection of bidimensional
HHH that combines the packet counters available in OF switches with an on demand
packet sampling. The packet counters are employed to build a trie with the IP prefixes
that are identified as HHHs. Periodically, the packet counters are read from the switch
in order to update the HHH information. In order to quickly react to changes in network
flows, we mirror the traffic aggregate for a short period of time and send it to a collector
device that employs packet sampling. The information returned by the collector is merged
with the HHHs detected by the packet counters. This mechanism keeps the detection time
low even when the set of HHHs changes frequently. In addition, our proposal achieves
high accuracy and demands for low overhead.

This paper is organized as follows. In Section 2, the concept of Hierarchical Heavy
Hitter is reviewed and the context of OF network is commented. Section 3 presents our
proposal in detail. Section 4 describes the performance evaluation of our mechanism.
Section 5 presents the conclusions and discusses future work.

2. Background
Current Internet Service Providers (ISPs) networks have high-speed links with several
gigabits per second, which potentially means thousands of packets per second. In this
context, it is critical to have automated mechanisms to detect suspicious behaviors. A
typical suspicious behavior is high usage of network elements, thus it is important to
track the flows which are the largest network consumers. In the literature, these flows are
usually known as frequent items or Heavy Hitters (HHs) [Cormode et al. 2003]. Network
flows are an example of stream data that can be summarized in a hierarchical structure
due to their aggregatable format. Flows that consume resources above a certain threshold
are called Hierarchical Heavy Hitters (HHHs) [Cormode et al. 2003]. In the following,
we present a more formal description for the concepts of HH and HHH.

Heavy Hitter (HH) is a flow or a traffic aggregate that consumes a significant
portion of the total network resources. Assuming the total amount of traffic, measured at
regular time intervals, is C and given a specific threshold φ, a Heavy Hitter is a flow or a
flow aggregation whose volume is at least φC and the maximum number of HHs is 1/φ.
As an example, if φ = 5% and the total amount of traffic is C = 1 Gbps, all flows with
rate of 50 Mbps or above are considered HHs and there are at most 20 HHs.

Hierarchical Heavy Hitters (HHHs) are the Heavy Hitters that are disposed into a
hierarchy and obey the following rules. If an HH is on the bottom level of the hierarchy
it is also an HHH, but its traffic volume must be discounted as we go up in the hierarchy.
At any level above the bottom, an HH is an HHH if its traffic volume hits the threshold φ
after discounting the sum of all HHHs descendants down in the hierarchy. For example,

 Anais 45

lets suppose we build a hierarchy based on the IP addressing and the following parame-
terization is employed: φ = 5% and C = 100, 000 pps. As part of the example, lets
assume the following network usage hierarchy: 10.0.0.0/32 = 5,010 pps; 10.0.0.0/30 =
9,081 pps; 10.0.0.0/28 = 13,317 pps. In this example, 10.0.0.0/32 and 10.0.0.0/28 are
HHHs, but 10.0.0.0/30 is not an HHH. Indeed, the HHH concept provides a more com-
pact and precise information, since it removes eventual redundant information about HHs
that achieved the threshold only due to theirs successors in the hierarchy.

Some works on HHH detection are limited to only one dimen-
sion [Truong and Guillemin 2007], including the paper [Jose et al. 2011] that is
designed to operate in OF networks such as our proposal. However, our approach
operates in two dimensions, the source and destination IP addresses, similar to the
works [Zhang et al. 2004, Mitzenmacher et al. 2012]. According to [Zhang et al. 2004],
the 1-dimensional and 2-dimensional HHH detection are arguably the two most important
scenarios for traffic analysis.

3. Proposal
OF switches offer the opportunity to forward high-volume traffic quickly, but with mini-
mum traffic monitoring. While a secondary device can inspect every packet, this would
imply on performance penalties. The issues related to these extreme approaches suggest
that a hybrid solution should be the best choice. We have built our solution based on
this principle and we named it as Online Detection of Hierarchical heavy hitters using
In-depth inspection or simply ODHIn. Our mechanism is composed of two parts: a con-
troller that handles counters from OF switch tables and computes HHHs; and a collector
which uses sampling to reduce the amount of packets and computes the HHHs over these
samples.

In order to track the hierarchy established over the IP addresses, we employed a
prefix tree or trie in the controller. The trie structure supports insertions of pairs of IP
prefixes (source and destination) and also provides fast prefix searching. In this trie, each
node keeps a pair of prefixes. The controller creates an initial hierarchy to accelerate
the startup of the mechanism. This initial hierarchy is generic and is formed by simple
expansion of prefix in a binary format, as partially illustrated by Fig. 1. The prefix in each
trie node becomes a rule in the OF switch and, thus, it has an associated counter which
is updated in a per packet basis. At each measurement interval M , the controller reads
the counters in order to update the trie nodes. Based on this information, the controller
computes the HHHs and evaluates if it is necessary to change the trie and to call the
collector.

Due to memory and processing constraints, it is important to limit the number
of wildcard rules in OF switches. To address this problem, we employed an approach
similar to the one proposed in [Jose et al. 2011], with two modifications. First, our trie is
not binary but quaternary. Second, we start our mechanism with a pre-built trie and, thus,
we apply the defined bounds since the startup of the mechanism. The bounds are defined
as a function of the maximum number of HHs, as described in the following.

The maximum number of HHs is 1/φ. In the worst case, when the number of
predecessors is the maximum, every HH has a different predecessor in the trie, and we
need additional 1/φ wildcard rules to monitor the predecessors. In addition, every time a

 46 IV Workshop de Pesquisa Experimental da Internet do Futuro

Figura 1. Trie partially created – each node contains a tuple with source and
destination prefix.

leaf node becomes an HH, we need to install rules for monitoring its successors because
they can become a new HH. As a consequence, we need additional 4/φ wildcard rules to
monitor the successors. Thus, the number of wildcard rules is given by:

wildcard rules =
1

φ
+

1

φ
+

4

φ
. (1)

As the number of nodes must be a multiple of 4, due to the trie structure, the effec-
tive number of rules must be constrained to 4dlog4(wildcard rules)e. Initially, the trie structure
is perfectly balanced and has height equal to dlog4(wildcard rules)e. For example, if
φ = 5% and C = 1 Gbps, we would need 120 wildcard rules and an initial trie with
height 4.

At each measurement interval M , the controller computes the HHHs based on
the dynamic total amount of traffic C. This approach is different from some traditional
solutions that assume φ as function of a fixed parameter, e.g. the link capacity. Our
approach is best fitted to traffic conditions, which varies quickly over time.

The collector is called every time a prefix achieves the threshold φ and if there
is no pending call to the collector. In order to send packets to the collector, the control-
ler sets a temporary rule in the switch to copy or mirror the traffic to the device running
the collector. Since our mechanism is designed to deal with large traffic aggregates, the
collector employs a sample technique to keep the response time small and to avoid pro-
cessing and memory overhead. The main purpose of the collector is to accelerate the
discovery of HHHs. This is important because the approach employed in the controller
presents large delays when there is a large distance between the prefix set in the node trie
and the effective prefix of an HHH.

Since the collector makes an in-depth inspection into the traffic it receives, it can
be as accurate as an offline algorithm over this limited set of samples. In addition, the
collector algorithm creates a list of HHHs based on the longest prefix match approach.
As a consequence, the collector provides the most specific prefixes that are identified as
HHHs. The HHHs detected by the collector are returned to the controller that merges the
information with the HHHs computed previously. The controller is an OF application that
runs over a true OF controller, e.g. NOX [Gude et al. 2008].

 Anais 47

4. Performance Evaluation

The authors of [Jose et al. 2011] kindly have made available the source code of theirs
simulator. Based on this code, we developed a new simulator that implements the ODHIn
algorithm, i.e, which is able to deal with bidimensional HHHs and to mirror traffic to a
collector device. The simulator operates over real packet traces and each packet is taken
as a discrete event.

In the following, we present results of our simulator running over a CAIDA trace.
This trace is an updated version of the one employed in [Jose et al. 2011]. It was collected
in a OC192 link with packet rate of 400 Kpps or 5 Gbps. Similar to [Jose et al. 2011], we
take 1 minute from the traffic trace.

We evaluated our mechanism under two traditional metrics of accuracy: recall
and precision [Cormode and Hadjieleftheriou 2010, Jose et al. 2011]. Recall is the total
number of true HHHs reported by a non-exact algorithm over the number of true HHHs
given by an exact (offline) algorithm. Thus, recall represents the misdetected HHHs and
the higher the recall, the lower the false negatives. In order to compute the recall rate, we
developed an exact algorithm that processes the CAIDA trace and provides all prefixes
that are true bidimensional HHHs.

The second metric, precision, is the number of true HHHs reported by our al-
gorithm over the total number of answers reported. Thus, precision represents the
amount of false positives reported. Figure 2 shows the recall and precision values ob-
tained by ODHIn over different sampling intervals (from 10 µs to 1000 µs). Similar
to [Jose et al. 2011], we have employed a measurement interval (M) of 5 s and the th-
reshold φ is configured to 5%. Each result is the average of the 12 samples collected
using the 1 minute-trace. Mean values are presented with confidence level of 95%.

 0

 20

 40

 60

 80

 100

 10 50 100 500 1000
 0

 20

 40

 60

 80

 100

Sampling interval (µs)

Recall (%)
Precision (%)

Figura 2. Recall and precision
as function of the sampling in-
terval.

algorithm precision # #
intervals HHH

[Jose et al. 2011] 75-88% 5 8
ODHIn 86-95% 1 10

Tabela 1. Comparison of both algo-
rithms.

Figure 2 shows that ODHIn achieves good accuracy for both metrics. However,
the accuracy decreases for sampling intervals of 500 µs or above. This result is expected
since less frequent sampling implies in leaving more traffic without analysis.

Table 1 compares the results achieved by ODHIn and the algorithm proposed
in [Jose et al. 2011]. The comparison is made taking into account the precision rate,
the number of HHHs detected and the number of measurement intervals taken by the

 48 IV Workshop de Pesquisa Experimental da Internet do Futuro

algorithm to provide the answer. In this evaluation, ODHIn uses a sampling interval of
100 µs, and the threshold φ is configured to 5% in both algorithms. From the results, we
can observe that ODHIn achieves higher precision and takes less measurement intervals to
detect the HHHs. The reason is that the algorithm in [Jose et al. 2011] builds a tree from
scratch and, at each interval, the tree grows until it reaches a stable state. Unlike, we have
designed our solution with a pre-built tree, which accelerates the process of detection.

5. Conclusion and Future Work
In this paper, we described an algorithm for efficient detection of bidimensional Hierar-
chical Heavy Hitters, designed to work in OpenFlow networks. Using counters from flow
tables of OF switches and packet sampling, we proposed an algorithm that quickly de-
tects large aggregates. We presented an evaluation of the algorithm and we shown that
the proposed mechanism has good accuracy and can detect HHHs in few measurement
intervals. We also compared the performance of this algorithm with other algorithm of
the literature, also designed to work with OpenFlow. Our algorithm overcomes the previ-
ous one in terms of accuracy and detection time. As future work, we plan to do tests on
commodity switches with real network streams, and to extend the algorithm to work with
more than 2 dimensions.

Referências
Cormode, G. and Hadjieleftheriou, M. (2010). Methods for finding frequent items in data

streams. The International Journal on Very Large Data Bases, 19(1):3–20.

Cormode, G., Korn, F., Muthukrishnan, S., and Srivastava, D. (2003). Finding hierarchical
heavy hitters in data streams. In International conference on Very large data bases,
pages 464–475.

Gude, N., Koponen, T., Pettit, J., Pfaff, B., Casado, M., McKeown, N., and Shenker,
S. (2008). NOX: towards an operating system for networks. SIGCOMM Comput.
Commun. Rev., 38(3):105–110.

Hershberger, J., Shrivastava, N., Suri, S., and Tóth, C. D. (2005). Space complexity
of hierarchical heavy hitters in multi-dimensional data streams. In ACM SIGMOD-
SIGACT-SIGART symposium on Principles of database systems, pages 338–347.

Jose, L., Yu, M., and Rexford, J. (2011). Online measurement of large traffic aggrega-
tes on commodity switches. In USENIX conference on Hot topics in management of
internet, cloud, and enterprise networks and services, pages 13–13.

Mitzenmacher, M., Steinke, T., and Thaler, J. (2012). Hierarchical Heavy Hitters with
the Space Saving Algorithm. In Meeting on Algorithm Engineering and Experiments,
pages 160–174.

Truong, P. and Guillemin, F. (2007). Dynamic binary tree for hierarchical clustering of
ip traffic. In Global Telecommunications Conference, 2007. GLOBECOM ’07. IEEE,
pages 6 –10.

Zhang, Y., Singh, S., Sen, S., Duffield, N., and Lund, C. (2004). Online identification of
hierarchical heavy hitters: algorithms, evaluation, and applications. In ACM Internet
Measurement Conference (IMC), pages 101–114.

